Understanding Git
lynxbee.com

https://www.lynxbee.com/

Version Control System - Why ? lynxbee.com

What is version control ?
=> Version control is a system that records changes to a file or set of files over time so that you can recall
specific versions later.

- want to keep every version

- allows you to revert files back to a previous state

- Revert the entire project back to a previous state

- compare changes over time

- See who last modified something that might be causing a problem
- who introduced an issue and when

https://www.lynxbee.com/

Centralised Version Control System lynxbee.com

Computer A

Checkout

Computer B

Checkout

Central VCS Server

=N

Version Database

HEE

- Came to existence when people need to collaborate
with developers on other systems.

- have a single server that contains all the versioned
files, and a number of clients that check out files from

that central place.
Example - CVS, Subversion, and Perforce

Advantages - everyone knows to a certain degree what

everyone else on the project is doing.
- Easier to Administer than local version control

systems.

Disadvantages - single point of failure

https://www.lynxbee.com/

Centralised Version Control System lynxbee.com

Centralized version control system
Server
Repository

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

https://www.lynxbee.com/

Distributed Version Control System lynxbee.com

Advantages over previous version control systems
- Not a single point of failure as people can mirror entire
repository / server on local PC

Example - Git, Mercurial, Bazaar or Darcs

https://www.lynxbee.com/

lynxbee.com

- Faster

- Simple to learn

- Fully Distributed

- Can handle Large projects

- Multi branch

- Stores data as snapshot

- Every operation on git it local and no dependence on remote server

- Entire history of projects can reside on local PC

- Local diff between past and present files

- No dependency on network, hence work offline and push changes to server when internet is available

- Git has integrity check with SHA-1 hash checksum hence prevents data corruption during transmission
to server

https://www.lynxbee.com/

Three Stage of Git lynxbee.com

Modified, Committed and Staged
Modified - means that you have changed the file but have not committed it to your database yet.
Committed - means that the data is safely stored in your local database.

Staged - means that you have marked a modified file in its current version to go into your next commit
snapshot.

The staging area is a simple file, generally contained in your Git directory, that
stores information about what will go into your next commit. It’'s sometimes referred
to as the index, but it’s becoming standard to refer to it as the staging area.

https://www.lynxbee.com/

The Git Workflow lynxbee.com

The basic Git workflow goes something like this:
1. You modify files in your working directory.
2. You stage the files, adding snapshots of them to your staging area. (simple “git add”)

3. You do a commit, which takes the files as they are in the staging area and stores that snapshot
permanently to your Git directory.

If a particular version of a file is in the git directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed since it was checked
out but has not been staged, it is modified.

https://www.lynxbee.com/

Installing Git

lynxbee.com

S sudo apt-get install git
S mkdir workspace

S git init

Initialized empty Git repository in
/home/user/workspace/code/github/git-basi
cs/.git/

“.git” directory is where Git stores the
metadata and object database for your
project.

S tree .git/
.git/
—— branches
—— config
—— description
—— HEAD
—— hooks
—— applypatch-msg.sample
—— commit-msg.sample
—— post-update.sample
—— pre-applypatch.sample
—— pre-commit.sample
—— prepare-commit-msg.sample
—— pre-push.sample
—— pre-rebase.sample
—— update.sample

info
L— exclude

objects
—— info
—— pack

https://www.lynxbee.com/

Identity and Editor ... one time setup lynxbee.com

$ git config --global user.name "My Name" All Global configs gets stored at

$ git config --global user.email “name@mycompany.com” $ cat SHOME/ gitconfig

[user]

Setting Global Editor for Git email = name@mycompany.com

name = My Name
$ git config --global core.editor vim [corg] _

editor = vim
S git config --list core.repositoryFormatVersion - Internal variable
user.email=name@mycompany.com identifying the repository format and layout
user.name=My Name version.
core.repositoryformatversion=0
core.filemode=true filemode - set true means file mode permission
core.bare=false changes are considered changes.

core.logallrefupdates=true
bare - set true means the directory is not a working

S git config --global merge.tool vimdiff directory (no real files).

mailto:name@mycompany.com
https://www.lynxbee.com/

Creating First Program ... Step 1 - Modify lunxbee.com

S pwd S git status
/home/user/workspace/code/github/git-basics/ On branch master
S vim helloworld.c Initial commit
#include <stdio.h> Untracked files:
(use "git add <file>..." to include in what will

int main(int argc, char **argv) { be committed)

printf("Hello World\n");

return O; helloworld.c

https://www.lynxbee.com/

Add a File to Git ... Step 2 - Staging lynxbee.com

S git add helloworld.c $ git status
On branch master
Or
Initial commit
S git add *.c
Changes to be committed:
Or (use "git rm --cached <file>..." to unstage)
S gitadd. new file: helloworld.c

Staging - “Changes to be committed”

https://www.lynxbee.com/

Commit Message to Git lunxbee.com

S git commit -m "This is Hello World Program"
[master (root-commit) f1295d3] This is Hello
World Program

1 file changed, 6 insertions(+)

create mode 100644 helloworld.c

https://www.lynxbee.com/

lynxbee.com

$ git log

commit f1295d33d900a9b79f4e3a8272d448b1dc04947d
Author: My Name <my.name@email.com>

Date: Thu Aug 1 05:08:05 2017 +0530

This is Hello World Program

https://www.lynxbee.com/

Git log ... lynxbee.com

$ git log -p

commit f1295d33d900a9b79f4e3a8272d448b1dc04947d
Author: My Name <my.name@email.com>

Date: Thu Aug 1 05:08:05 2017 +0530

This is Hello World Program

diff --git a/helloworld.c b/helloworld.c
new file mode 100644

index 0000000..b88f634

--- /dev/null

+++ b/helloworld.c

@@ -0,0 +1,6 @@

+#include <stdio.h>

+

+int main(int argcc, char **argv) {
+ printf("Hello World\n");

+ return 0O;

B

https://www.lynxbee.com/

Skipping from Git lynxbee.com

$ touch test.txt
$ echo “This is a Test Text File” > test.txt

$Is -alh

.git
helloworld.c
test.txt

$ qit status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)

test.txt

https://www.lynxbee.com/

Skipping from Git ... lunxbee.com

$ vim .gitignore
*.ixt

$Is -alh

.git
.gitignore
helloworld.c
test.txt

$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
.gitignore

nothing added to commit but untracked files present (use "git add" to track)

https://www.lynxbee.com/

Track .gitignore lynxbee.com

$ git add .gitignore

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: .gitignore

To see the changed already staged into git, for the next commit. (Similar to git diff which works for
modified code)

$ qit diff --cached

$ git commit -m "Added .gitignore"
[master 6509fab] Added .gitignore
1 file changed, 1 insertion(+)
create mode 100644 .gitignore

https://www.lynxbee.com/

Adding Code to Existing Source Code lynxbee.com

Modify our helloworld.c to add two numbers and print addition.
$ vim helloworld.c
#include <stdio.h>
int add(int i, int j) {

return (i+j);
}

int main(int argcc, char **argv) {
intr;
printf("Hello World\n");

r = add(10,2);
printf("Addition = %d\n", r);

return O;

https://www.lynxbee.com/

What happens after modifying existing source code lunxbee.com

$ qit diff
$ git status diff --git a/helloworld.c b/helloworld.c
On branch master index b88f634..dec07¢c9 100644
Changes not staged for commit: --- a/helloworld.c
(use "git add <file>..." to update what will be +++ b/helloworld.c
committed) @Q@-1,6+1,15 Q@
(use "git checkout -- <file>..." to discard changes #include <stdio.h>

in working directory)
+int add(int i, int j) {

modified: helloworld.c + return (i+j);
+}
no changes added to commit (use "git add" and/or +
"git commit -a") int main(int argc, char **argv) {
+ intr;

printf("Hello World\n");

r=add(10,2);
printf("Addition = %d\n", r);

+ + + +

return O;

https://www.lynxbee.com/

How source code deletion gets tracked ? lynxbee.com

$ qit diff

diff --git a/helloworld.c b/helloworld.c
index b88f634..9399653 100644

--- a/helloworld.c

+++ b/helloworld.c

@@ -1,6 +1,14 Q@

#include <stdio.h>

+int add(int i, int j) {

+ return (i+j);

+)

+

int main(int argc, char **argv) {
printf("Hello World\n");
intr;

r=add(10,2);
printf("Addition = %d\n", r);

+ + 4+ + +

return O;

—

https://www.lynxbee.com/

Git commit —a € -s

lynxbee.com

$ git commit -a
Written two number addition function

We written two number addition program,
This is demonstration of "git commit -a"

Please enter the commit message for your changes. Lines starting
with '# will be ignored, and an empty message aborts the commit.
On branch master

Changes to be committed:

modified: helloworld.c

#

$ git commit -a
[master 3b2e856] Written two number addition function
1 file changed, 9 insertions(+), 1 deletion(-)

https://www.lynxbee.com/

Create a Branch and Checkout lynxbee.com

Check Existing Branch With “git log” command we can see after checkout to new
branch “training-development” we got a copy of what we

$ git branch had exactly on “master” branch.

* master

$ git branch training-development

$ git branch
* master
training-development

$ git checkout training-development
Switched to branch 'training-development'

$ qgit branch
master
* training-development

https://www.lynxbee.com/

Add Some more code on New Branch

lynxbee.com

$ qit diff

diff --git a/helloworld.c b/helloworld.c
index 9399653..480e3a2 100644

--- a/helloworld.c

+++ b/helloworld.c

@@ '1!5 +1’9 @@

#include <stdio.h>

+int subtract (int i, int j) {

+ return (i-j);

+}

+

int add(int i, int j) {
return (i+j);

}

@@ -10,5 +14,8 @@ int main(int argc, char **argv) {
r =add(10,2);
printf("Addition = %d\n", r);

+ r = subtract(10,2);
printf("Subtraction = %d\n", r);

+

return O;

On New Branch, we added “Subtraction” function as
shown in git diff here.

Now, Commit this code as,
“git commit -a -s”

$ git commit -a -s

[training-development fc58d9d] This is subtraction
code

1 file changed, 7 insertions(+)

Check with “git status” “
all set.

git log” and “git branch” we are

https://www.lynxbee.com/

Difference between Two Branches lynxbee.com

$ git diff master training-development
diff --git a/helloworld.c b/helloworld.c
index 9399653..480e3a2 100644

--- a/helloworld.c

+++ b/helloworld.c

@@-1,5+1,9 @@

#include <stdio.h>

+int subtract (int i, int j) {

+ return (i-j);

+}

+

int add(int i, int j) {
return (i+j);

}

@@ -10,5 +14,8 @@ int main(int argc, char **argv) {
r =add(10,2);
printf("Addition = %d\n", r);

+ r = subtract(10,2);
printf("Subtraction = %d\n", r);

+

return O;

https://www.lynxbee.com/

Difference Between Two Commits lynxbee.com

$ git diff 6509fabd7b99618be49136245345a6f19cd8482a fc58d9d9567332febf224b865d46ed88bfe4b671

diff --git a/helloworld.c b/helloworld.c
index b88f634..480e3a2 100644

--- a/helloworld.c

+++ b/helloworld.c

@@ -1,6 +1,21 @@

#include <stdio.h>

+int subtract (int i, int j) {

+ return (i-j);

+

+

+int add(int i, int j) {

+ return (i+j);

+

+

int main(int argc, char **argv) {
printf("Hello World\n");
intr;

r=add(10,2);
printf("Addition = %d\n", r);

r = subtract(10,2);
printf("Subtraction = %d\n", r);

+ 4+ o+

return O;

-

https://www.lynxbee.com/

Visit
lynxbee.com

https://www.lynxbee.com/

